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Abstract. It has been recently found that the equations of motion of several semiclassical systems must
take into account terms arising from Berry phases contributions. Those terms are responsible for the spin
Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous media.
Intensive ongoing research on this subject seems to indicate that a broad class of quantum systems may
be affected by Berry phase terms. It is therefore important to find a general procedure allowing for the
determination of semiclassical Hamiltonian with Berry Phase corrections. This article presents a general
diagonalization method at order � for a large class of quantum Hamiltonians directly inducing Berry phase
corrections. As a consequence, Berry phase terms on both coordinates and momentum operators naturally
arise during the diagonalization procedure. This leads to new equations of motion for a wide class of
semiclassical system. As physical applications we consider here a Dirac particle in an electromagnetic or
static gravitational field, and the propagation of a Bloch electrons in an external electromagnetic field.

PACS. 03.65.-w Quantum mechanics – 03.65.Sq Semiclassical theories and applications – 03.65.Vf Phases:
geometric; dynamic or topological – 04.20.Cv Fundamental problems and general formalism

1 Introduction

Since the seminal work of Berry [1], the notion of Berry
phase has found several applications in branches of quan-
tum physics such as atomic and molecular physics, op-
tics and gauge theories. Most studies consider the geomet-
ric phase that a wave function acquires when a quantum
mechanical system has an adiabatic evolution. Yet, the
Berry phase in momentum space has recently found unex-
pected applications in the topic of spintronics. Such a term
may indeed be responsible for a transverse dissipationless
spin-current in semiconductors in the presence of electric
fields [2]. This effect is a particular case of the Spin-Hall
effect which is now predicted and observed in many dif-
ferent physical situations and can be interpreted at the
semiclassical level as due to the influence of Berry con-
nections on semiclassical equations of motion of spinning
particles, like electrons in electric [3] or magnetic fields [4].
In the above cited examples, the semiclassical equations of
motion where derived from an approximate semiclassical
Hamiltonian in a representation where this latter is diago-
nal. It was then shown that a noncommutative geometry,
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originating from the presence of a Berry phase which turns
out to be a spin-orbit coupling, underlies the semiclassical
dynamics. Spin-orbit contributions on the propagation of
light have also been the focus of several other works [3,
5,6] and have led to a generalization of geometric optics
called geometric spinoptics [7].

Semiclassical methods play a very important role in
solid state physics too, in studying the dynamics of elec-
trons to account for the various properties of metals, semi-
conductors and insulators [8]. In a series of papers [9] (see
also [10]), a new set of semiclassical equations with a Berry
phase correction was proposed to account for the semiclas-
sical dynamics of electrons in magnetic Bloch bands (in
the usual one band approximation). These equations were
derived by considering a wave packet in a band and using a
time-dependent variational principle in a Lagrangian for-
mulation. The derivation of a semiclassical Hamiltonian
was shown to lead to difficulties in the presence of Berry
phase terms [9]. The apparent non-canonical character of
the equations of motion with Berry phase corrections led
the authors of [11] to conclude that the naive phase space
volume is not conserved in the presence of a Berry phase
and a magnetic field. There is nevertheless an invariant
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measure as found by themselves, so the Liouville theorem
is not really violated in the end. This invariant measure
is actually a general result of the well-established theory
of non-canonical Hamiltonian dynamics, as pointed out
by a number of authors [12–14]. However it is only in [15]
that the non-canonical Hamiltonian formulation of a semi-
classical electron in magnetic Bloch bands has been fully
derived. This Hamiltonian approach allows deriving rigor-
ously the semiclassical equations of motion, including ex-
plicitly the role of the Berry curvature and showed many
similarities with the description of a Dirac electron in an
electromagnetic field as in [4]. The common feature of the
Hamiltonian formulations discussed above is that a non-
commutative geometry underlies the algebraic structure of
both coordinates and momenta. Actually, a Berry phase
contribution to the dynamical operators stems from the
representation where the kinetic energy is diagonal (for
instance Foldy-Wouthuysen or Bloch representation). In
this representation the physical coordinate and momen-
tum become noncommutative operators.

The previous discussion shows that Berry phase terms
could be present in semiclassical equations of motion of
several physical systems ranging from electrons in vacuum,
in solid or in semiconductor to photons in inhomogeneous
media, with potential application in the field of spintronics
and spinoptics. This in turn called for a general semiclas-
sical Hamiltonian formalism from which semiclassical dy-
namics of a quantum system can be derived. This paper
presents a general method of diagonalization at order �

for a quantum mechanical Hamiltonian presenting bands
structure, like for electrons in a periodic potential or for
a Dirac (massive or massless) like-Hamiltonian. Starting
with a Hamiltonian depending only on an invariant mo-
mentum P and whose diagonalization is known, we can
introduce a dependence in the variable R and diagonal-
ize the Hamiltonian in four steps (discussed in the text).
During this process of diagonalization, we show that both
position and momentum operators acquire a Berry-phase
contribution making both the coordinate and momentum
algebra noncommutative. As physical applications and to
check to validity of our method we further consider the
case of Dirac particle in an electromagnetic field and com-
pare with the semiclassical diagonalization given in [4].
We also consider the case of a Dirac particle in a symmet-
ric static gravitational field (the asymmetric case is stud-
ied in Ref. [16]) and compare with the articles [17,18].
As a last application, the reader will find the details of
the diagonalization sketched in [15] for the propagation
of a Bloch electron (spinless) in an external electromag-
netic field. These various physical applications show that
our semiclassical Hamiltonian diagonalization approach is
potentially promising since it unifies several apparently
unrelated problematics in one formalism.

The paper is organized as follows. In Section 2 we de-
velop our formalism in the case of a general Hamiltonian
which has an energy bands structure. We then derive the
very general equations of motion in this case. Section 3
is devoted to the application of our method to the case
of the Dirac Hamiltonian in an electromagnetic field but

in a flat space, and to the diagonalization of the Dirac
Hamiltonian in a symmetric static gravitational field, al-
lowing us to check the validity of our method. Section 4
retrieves the equations of motion for an electron in a pe-
riodic potential within our general set up. Section 5 is for
the conclusion.

2 A general process of semiclassical
diagonalization

In this section we present a method to diagonalize at
the semiclassical order (�) a quantum mechanical system
whose state space is a tensor product L2

(R3
) ⊗ V with

V some internal space. In other words, the Hamiltonian
of this system can be written as a matrix H0 (P,R) of
size dim V whose elements are operators depending on
a couple of canonical variables P and R. The archetype
example is the Dirac Hamiltonian with V = C4, but in
Appendix B we show how a spinless electron in a peri-
odic potential fits also in this set up. By diagonalization,
we always mean here a unitary transformation setting the
Hamiltonian in a diagonal matrix form, the diagonal ele-
ments being operators depending on P and R. That is, we
do not aim at finding the eigenvalues, but rather to derive
the Band Hamiltonians, that are usually relevant for the
semiclassical dynamics.

More precisely, our strategy will be to solve the ex-
act diagonalization for H0 (P,R) at order �, when the
diagonalization of a fictitious Hamiltonian H0 (P, r̃) is
known for a parameter r̃ (replacing R) which is supposed
to commute with P (for instance this may be the Foldy-
Wouthuysen transformation [19] for a free Dirac particle).
We show how to compute the quantum corrections (at
leading order in �) that were neglected during this formal
diagonalization (where position and momenta where con-
sidered as commuting quantities). The idea behind this
procedure is that it is much easier to solve the diagonal-
ization for H0(P, r̃), as seen in our applications, and only
then turn to H0(P, R).

2.1 Preliminary: products of operators series

To develop our process of diagonalization, the semiclas-
sical expression of products of symmetrized expressions
S (P,R) depending on the canonical couple of variables
P and R is required. These expressions are also assumed
to have series expansions in P and R whose coefficients
can be of a matrix form (this last assumption allowing to
deal with Dirac Hamiltonians). Let us consider two such
expressions S1 (P,R) and S2 (P,R), supposed to be sym-
metrized in P and R. By symmetrization, we mean that
each expression has been written in a form where all the
powers of P have been put half on the left and half on
the right of the expression. Our aim is now to write the
product S1 (P,R)S2 (P,R) as a symmetric expression in
terms of P and R. This is easy to realize at order �, since
in that case, pushing half of the powers of P in S2 (P,R)
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on the left and half the powers of S1 (P,R) on the right is
equivalent to the computation of some commutators. One
can easily see that at order �

S1 (P,R)S2 (P,R) = Sym(S1 (P,R)S2 (P,R))

+
i

2
�Asym∇Rl

∇P l [S1 (P,R)S2 (P,R)] (1)

where Sym(S1 (P,R)S2 (P,R)) is the symmetrized ex-
pression for the product, and Asym is defined through

Asym∇Rl
∇P l [S1 (P,R)S2 (P,R)] = ∇Rl

S1 (P,R)
×∇P lS2 (P,R) −∇P lS1 (P,R)∇Rl

S2 (P,R) . (2)

This formula can be easily generalized to an arbitrary
product of n terms, but for the sequel of this paper, only
three will be needed

S1(P,R)S2(P,R)S3(P,R)
= Sym(S1 (P,R)S2 (P,R)S3 (P,R))

+
i

2
�Asym∇Rl

∇P l [S1(P,R)S2 (P,R)] S3 (P,R)

+
i

2
�S1(P,R)Asym∇Rl

∇P l [S2 (P,R)S3 (P,R)]

+
i

2
�Asym∇Rl

∇P l

[
S1(P,R)S2(P,R)S3 (P,R)

]
(3)

where

Asym∇Rl
∇P l

[
S1(P,R)S2(P,R)S3(P,R)

]
=

[∇Rl
S1(P,R)] S2 (P,R)∇P lS3 (P,R)

− [∇P lS1 (P,R)] S2 (P,R)∇Rl
S3 (P,R) . (4)

Let us stress again that all these identities are valid only
at order � and that considering higher order corrections
would of course induce more corrections.

2.2 Diagonalization with a parameter r̃

Let us consider a general Hamiltonian H0 (P,R) which
admits a series expansion in P and R written here for
convenience in a symmetrical form. To perform the semi-
classical diagonalization of this operator, we first consider
in this subsection a fictitious Hamiltonian H0 (P, r̃) where
a parameter r̃ commuting with P has replaced the oper-
ator R. We further assume that H0 (P, r̃) is known to be
exactly diagonalized through a matrix U (P, r̃) ≡ U . We
assume that U and U (P, r̃)H0 (P, r̃)U+ (P, r̃) can be
expanded in series of P (with positive or negative powers)
as it will be the case in our applications, but in fact this as-
sumption which is practical for our proofs could probably
be relaxed.

As an typical example we can consider the following
kind of Dirac Hamiltonian

H0 = α · (P − A(r̃))+βm (5)

where A(r̃) mimics a formal magnetic potential. The po-
tential A(r̃) being R independent, it only shifts the mo-
mentum for each value of r̃. As a consequence, the usual
Foldy Wouthuysen [19] transformation expressed in terms
of P− A instead of P, diagonalizes the Dirac Hamiltonian
exactly.

Going back to the general case, the diagonalization of
H0 (P, r̃) will be written as

ε (P, r̃) = U (P, r̃) H0 (P, r̃)U+ (P, r̃) (6)

where ε (P, r̃) is a diagonal matrix. For later use, let us
notice that we have U (P, r̃)PU+ (P, r̃) = P.

To gain some hints from our initial diagonaliza-
tion, recall we assumed that the product ε (P, r̃) =
U (P, r̃)H0 (P, r̃)U+ (P, r̃) can be expanded in series of
monomial terms of the form:

(
εi1
1 (r̃)P ki1

i1

)
...
(
εin

n (r̃)P kin

in

)

where the εil

l (r̃) are some matrices commuting with P,
and P

kil

il
is the ilth component of P (il = 1, 2, 3) at some

power kil
(this power should be written kil,l but we will

avoid an excess of notation here). As usual, the sums over
the il are implicit. Rearranging the series in powers of P1,
P2, P3 and given that r̃ is a parameter, we can write the
energy in a symmetrical form:

ε (P, r̃)=
1
2

∑

X

⎡

⎣AX(r̃)

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠+

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠AX(r̃)

⎤

⎦

(7)
where

(∏
i=1,2,3 PXi

i

)
is a given momentum power and

AX(r̃) is a combination of the εil

l (r̃). The X labels the
multi index (Xi, i = 1, 2, 3).

The important consequence here is that the matrix
AX(r̃) is diagonal. As an example, think of the Dirac
Hamiltonian diagonalization, which involves some prod-
ucts α · Pα ·P, rearranged as

1
2

[αiPiαjPj + αjPjαiPi] =
1
2

[αiαj + αjαi] PiPj (8)

and 1
2 [αiαj + αjαi] is diagonal, by the usual rules for

Dirac matrices.
Let us conclude this subsection by noting that the sym-

metrizations we performed is unnecessary here, but will be
of a practical interest when dealing with the exact diago-
nalization.

2.3 Introducing the R dependence.
The transformation Ansatz

We are now going to reintroduce R into H0 in order to
diagonalize exactly H0 (P,R) at the � order. In the fol-
lowing symmetrization in R and P will be assumed in
all expressions. To find the diagonalization transforma-
tion for H0 (P,R), we will use the following method. First
notice that the Hamiltonian H0 (P,R) is “almost” diago-
nalized, that is diagonalized at zeroth order in �, through
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the transformation U (P,R) (which is also symmetrized
given our convention).

However, through the symmetrization process, the ma-
trix U (P,R) does not remain unitary. As a consequence,
we will rather consider a matrix U (P,R) + XU (P,R),
where X is a contribution of order � that ensures the uni-
tarity of the transformation at order � (the factor U is a
normalization that simplifies the subsequent expressions).

The matrix X can be explicitly computed. Actually,
from the unitary conditions

(U(P,R) + XU)
(
U+(P,R) + U+X+

)
= 1 (9)

and
(
U+(P,R) + U+X+

)
(U(P,R) + XU) = 1 (10)

or equivalently

U(P,R)U+(P,R) + X + X+ = 1

U+(P,R)U(P,R) + U+
(
X + X+

)
U = 1. (11)

To solve this equation, let us first notice that
U(P,R)U+(P,R) �= 1 since U(P,R) is not unitary. The
crucial point here and in the sequel of this paper is the
computation of a product of expressions in which the R
dependence has been introduced. To do so let us use the
initial relation for the parameter r̃

U(P, r̃)U+(P, r̃) =1 (12)

expanded in a symmetric series (as we did for the
Hamiltonian)

U(P, r̃)U+(P, r̃) =
1
2

∑

X

⎡

⎣BX(r̃)

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠

+

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠BX(r̃)

⎤

⎦ = 1. (13)

Therefore the series expansion
∑

X BX(r̃)
(∏

i=1,2,3 PXi

i

)

reduces to one constant term: the identity matrix.
Now, going back to U(P,R), we use the symmetriza-

tion formula (1)

U(P,R)U+(P,R) =

1
2

∑

X

⎡

⎣BX(R)

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠+

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠BX(R)

⎤

⎦

+
i

2
�Asym∇Rl

∇P l

[
U(P,R)U+(P,R)

]
. (14)

Since our result about the BX(r̃) applies also to BX(R)
after replacing r̃ by R, one has:

U(P,R)U+(P,R) =

1 +
i

2
�Asym∇Rl

∇P l

[
U(P,R)U+(P,R)

]

= 1 − i

2�
[APl

,ARl
] (15)

where we have defined the (“non projected”, see below)
Berry connections (we use the terminology of Ref. [20]) as

AR = i�U(P,R)∇PU+(P,R)

AP = −i�U(P,R)∇RU+(P,R). (16)

that are non diagonal Hermitian matrices of order �. Sim-
ilarly, we have also:

U+(P,R)U(P,R) =

1 +
i

2
�Asym∇Rl

∇P l

[
U+(P,R)U(P,R)

]

= 1 − U+(P,R)
i

2�
[AP l ,ARl

] U(P,R). (17)

Let us note that, as can be checked easily, the Berry con-
nections are Hermitian. So is i

2�
[AP l ,ARl

]. Therefore we
can solve our problem with

X =
i

4�
[AP l ,ARl

] . (18)

Let us make an important remark at this point. Our choice
for X is obviously not unique. Actually, it has been chosen
to ensure the unitarity of the transformation and to ob-
tain a transformation that reduces to the initial one when
P and R do commute. We could thus add to X an ex-
pression like δXU where δX is anti-Hermitian. It is easy
to see that the operator U (P,R) + XU + δXU is still
unitary. However, we will soon see that this non unicity is
irrelevant and that our choice is sufficient to perform the
diagonalization at order �.

2.4 The quasidiagonalization

We will now consider the following quasi-diagonalization
transformation
[
(U (P,R) + XU)H0 (P,R)

(
U+ (P,R) + U+X+

)]
.

(19)
To compute this last expression, decompose it at the first
order in � as

U (P,R)H0 (P,R) U+ (P,R)+XUH0 (P,R)U+(P,R)

+ U(P,R)H0(P,R)U+X+�
U(P,R)H0(P,R)U+ (P,R) + Xε (P,R) + ε (P,R)X+.

(20)

Let us first have a look to U (P,R)H0 (P,R)U+ (P,R)
and consider it, as before, as a series of products of opera-
tors in P and R. If this two variables where commuting, we
would recover the expansion ε (P,R) given in Section 1.2.
But now, since, R does not commute with P, one has
rather

U (P,R)H0 (P,R) U+ (P,R) =

1
2

∑

X

⎡

⎣AX(R)

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠+

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠AX(R)

⎤

⎦

+ [commutators] (21)
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the commutators appearing while pushing the momentum
powers on the left or on the right.

We can compute the first two terms of the right hand
side by the same trick as before. Actually, by construction,
the coefficients of the series expansion of AX(R) in the
variable R, are the same as the coefficients (which are
diagonal) of the expansion of AX(r) in the parameter r.
As a consequence,

1
2

∑

X

⎡

⎣AX(R)

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠+

⎛

⎝
∏

i=1,2,3

PXi

i

⎞

⎠AX(R)

⎤

⎦

(22)
is the series expansion of ε (P,R), the powers of P being
rejected symmetrically to the left and to the right.

As an example, consider again the case of the Dirac
Hamiltonian with an electromagnetic field. The free
“Benchmark” case is ε2 (P) = P2, and given our con-
ventions, replacing P by P− A(R) leads us to define
ε2 (P − A(R)) = P2 − A(R) · P − P · A(R) + A2(R),
which is simply the usual operator (P − A(R))2. By the
same way, we obtain as a series expansion

ε (P− A(R)) = ε (P) − 1
2

(
A(R) · P

P2
+

P
P2

· A(R)
)

+
1
4

[
1
P2

A2(R) + A2(R)
1
P2

]
+ ... (23)

The last term in the right hand side of (21) involves just
half the commutators obtained in pushing the momentum
operators to the left or the right. As explained in Sec-
tion 2.1 equation (3), they are simply given by

[commutators] =
i

2
�Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]
. (24)

As a consequence, we can write

U (P,R)H0 (P,R)U+ (P,R) = ε (P,R)

+
i

2
�Asym∇Rl

∇P l

[
U (P,R)H0 (P,R) U+ (P,R)

]
.

(25)

A lengthy but straightforward computation presented in
Appendix A leads to

U(P,R)H0(P,R)U+(P,R)=

ε (P,R) +
1
2

[ARl
∇Rlε (P,R) + ∇Rlε (P,R)ARl

]

+
1
2

[AP l∇Pl
ε (P,R) + ∇Pl

ε (P,R)AP l ]

− i

2�
[ε (P,R) ,AP l ]ARl

+
i

2�
[ε (P,R) ,ARl

]AP l

+
i

2�
[ARl

,AP l ] ε (P,R) . (26)

To end up with the quasi-diagonalization, we have to add
the expression

Xε (P,R) + ε (P,R)X+. (27)

Given the expression obtained previously for X , we have
thus

Xε (P,R) + ε (P,R)X+ =

− i

4�
[ARl

,AP l ] ε (P,R) − i

4�
ε (P,R) [ARl

,AP l ] . (28)

We can thus ultimately write the diagonalization pro-
cess as:
[
(U (P,R) + XU)H0 (P,R)

(
U+ (P,R) + U+X+

)]
=

ε (P,R) +
1
2

[ARl
∇Rlε (P,R) + ∇Rlε (P,R)ARl

]

+
1
2

[AP l∇Pl
ε (P,R) + ∇Pl

ε (P,R)AP l ]

− i

2�
[ε (P,R) ,AP l ]ARl

+
i

2�
[ε (P,R) ,ARl

]AP l

+
i

4�
[[ARl

,AP l ] , ε (P,R)] . (29)

Let us conclude this section by noting that our trans-
formation is not a diagonalization at order �, since it
includes non diagonal contributions of order � through
the Berry connections ARl

and AP l , justifying the name
quasi-diagonalization. However, the next paragraph will
show that these non diagonal terms are only an artifact.
Actually, projecting our transformed Hamiltonian on the
diagonal will in fact yield the genuine diagonalization.

2.5 The “exact” semiclassical diagonalization

As mentioned in Section 2.2, our choice of transforma-
tion U (P,R) + XU is somewhat arbitrary, however it is
sufficient to perform the exact diagonalization as shown
in the present paragraph. Actually, since U (P,R) diag-
onalizes H0 at zeroth order in �, it reasonable to con-
sider an-unknown- true diagonalization unitary operator
U1 (P,R) reducing to U (P,R) at zeroth order in � of the
following form U1 (P,R) = U (P,R) + � (...). As a con-
sequence U1 (P,R) and U (P,R) + XU are equal at the
zeroth order in � and the difference

δXU ≡ U1 (P,R) − U (P,R) − XU (30)

is of order �. Moreover U1 (P,R) and U (P,R)+XU being
both unitary, δX is easily seen to be antihermitian. As
a direct consequence, one can check that the difference
between the exact diagonalization and our approximate
one

[
(U (P,R) + XU)H0 (P,R)

(
U+ (P,R) + U+X+

)]

− [U1 (P,R)H0 (P,R)U+
1 (P,R)

]
(31)

is equal to
[δX, ε (P,R)] . (32)

Given that ε (P,R) is diagonal, this last term is always
non diagonal. As a consequence, if we project on the
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diagonal the difference between our transformations, one
gets 0

P
[
(U (P,R) + XU)H0 (P,R)

(
U+ (P,R)

+U+X+
)]− P

[
U1 (P,R)H0 (P,R)U+

1 (P,R)
]

= 0.
(33)

Here we have denoted P[...] the projection on the diagonal.
Now, given that U1 (P,R)H0 (P,R) U+

1 (P,R) is
truly diagonal, one has

P
[
U1 (P,R)H0 (P,R)U+

1 (P,R)
]

=

U1 (P,R)H0 (P,R)U+
1 (P,R) (34)

so that ultimately

P
[
(U (P,R) + XU)H0 (P,R)

(
U+ (P,R) + U+X+

)]
=

U1 (P,R)H0 (P,R) U+
1 (P,R) . (35)

We can therefore conclude, that the projection of our
quasi-diagonalized Hamiltonian, by eliminating thus the
non diagonal parts, is in fact the genuine diagonalized
Hamiltonian at order �.

2.6 The diagonal Hamiltonian

From the previous discussion we understand that the
genuine semiclassical diagonal Hamiltonian HD is simply
given by the projection on the diagonal of the Hamiltonian
equation (29):

HD =P
[
(U (P,R)+XU)H0(P,R)

(
U+(P,R)+U+X+

)]

=ε (P,R) +
1
2

[ARl
∇Rl

ε (P,R) + ∇Rl
ε (P,R)ARl

]

+
1
2

[APl
∇Pl

ε (P,R) + ∇Pl
ε (P,R)APl

]

+P
[
− i

2�
[ε(P,R),APl

]ARl
+

i

2�
[ε (P,R),ARl

]APl

]

(36)

where we introduced the notation A = P [A] . This Hamil-
tonian can be rewritten

HD =ε (P+AP ,R+AR) +
i

2�
P [[ε (P,R) ,ARl

]APl

− [ε (P,R) ,APl
]ARl

]

�ε (p, r)+
i

2�
P [[ε (p, r),ARl

]APl
−[ε (p, r),APl

]ARl
]

(37)

where we have defined the projected dynamical operators

r = P
[
(U (P,R))RU+(P,R)

]
= R + AR

p = P
[
U (P,R)PU+(P,R)

]
= P + AP. (38)

The non-canonical dynamical variables (p, r) have cor-
rections of order � through the presence of the Berry
connections.

2.7 The equations of motion

Given the Hamiltonian derived in the previous subsection,
the equations of motion can now be easily derived. As
usual [3,15] the dynamics has to be considered, not for the
usual position R and momentum P, but rather for the pro-
jected variables r and p. These new dynamical operators
which naturally appear in our diagonalization process at
the � order have components which do not commute any
more. Actually

[ri, rj ] = iΘrr
ij = i�

(∇PiARj −∇PjARi

)
+
[
ARj ,ARi

]

[pi, pj ] = iΘpp
ij = −i�

(∇RiAPj −∇Rj APi

)
+
[
APi ,APj

]

[ri, pj ] = i�δij + iΘrp
ij = i�δij + i�

(∇RjARi + ∇PiAPj

)

+
[
ARi ,APj

]
(39)

the Θij being the so called non-Abelian Berry curvatures.
They are of order �

2 as lowest order corrections to the
commutators, but will actually induce semiclassical cor-
rections of order � to the equations of motion. Indeed the
one band-Hamiltonian equation (37) yields directly to gen-
eral equations of motion for r, p:

ṙ =
i

�
[r, ε (p, r)] +

i

�

[
r,

i

2�
P [[ε (p, r) ,ARl

]AP l

− [ε (p, r) ,AP l ]ARl
]]

ṗ =
i

�
[P, ε (p, r)] +

i

�

[
p,

i

2�
P [[ε (p, r) ,ARl

]AP l

− [ε (p, r) ,AP l ]ARl
]] (40)

where the commutators can be computed through the pre-
vious commutation rules equation (39). The last term in
each equation represents a contribution of “magnetiza-
tion” type (see the following applications) and has the
advantage to present this general form whatever the sys-
tem initially considered. However, to put some flesh on
these equations, we now turn to several examples covered
by our formalism.

3 Application 1: the Dirac electron

To apply our previous formalism, we will consider two
cases of Dirac Hamiltonians: the electromagnetic field and
the static symmetrical gravitational field. These two cases
have already been treated by different methods ([4,17,
18]), but in the second case (gravitational field) references
to Berry phases was made for the first time in [16].

3.1 The Dirac electron in an electromagnetic field

The diagonalization of the Dirac Hamiltonian in the
presence of an electromagnetic field is a difficult prob-
lem which was solved only approximately in the non-
relativistic limit in an m−1 expansion. Another approach
consists in diagonalizing the Hamiltonian at the semiclas-
sical order as was done in [4] using an approximate Foldy-
Wouthuysen transformation [19]. From the semiclassical
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ARi = i�U∇PiU
+ = �

iα· (P− A(R)) Piβ + iβE(E + m)αi − E (Σ × (P −A(R)))i

2E2(E + m)
(45)

Hamiltonian the equations of motion were derived show-
ing a topological spin-transport effect due to the presence
of the Berry phases. Here we propose to apply our gen-
eral formalism for the semiclassical diagonalization of the
Dirac Hamiltonian to show the effectiveness of our general
method. It is worth noticing that the method developed
above has now to be adapted as we will transform the
Dirac Hamiltonian into a (2 × 2) block-diagonal matrix
(due to the spin degree of freedom). However, it is easy to
check that, since the non diagonal components for the en-
ergy blocks are of order �, these corrections do not impair
our general formulas for the Berry phases contributions.

We thus start with the following Dirac Hamiltonian:

H0 (P,R) = α· (P − A(R)) + βm + V (R) (41)

where the matrix α and β are the usual (4 × 4) Dirac
matrices:

αi =

⎛

⎜
⎝

0 0
0 0 σi

σi
0 0
0 0

⎞

⎟
⎠ (42)

with σi the usual (2 × 2) Pauli matrices (i = 1, 2, 3) and

β =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎠ . (43)

Replacing R by the parameter r̃, A(r̃) just shifts the mo-
mentum, so that we can diagonalize H0 (P, r̃) through the
well known Foldy-Wouthuysen transformation

U (P, r̃) =
E + m + βα· (P − A(r̃))

√
2E(E + m)

(44)

where E =
√

(P − A(r̃))2 + m2. In this context, intro-
ducing the dependence in R we define the (non projected)
Berry connections at first order in � as a (4 × 4) matrix

see equation (45) above

and
APl

= −i�U∇Rl
U+ = ∇Rl

Ak(R)ARk
(46)

where E will now denote the symmetrized form of E =√
(P−A(R))2 + m2 (here at zeroth order in � we can

consider that P and R commute). The spin matrices Σi

(i = 1, 2, 3) are given by

Σi=

⎛

⎜
⎝

σi
0 0
0 0

0 0
0 0 σi

⎞

⎟
⎠ .

The general method developed in the previous section al-
lows us to write the diagonal Hamiltonian HD as a matrix
generalization of equation (37)

HD =P
[
UH0U

+
]

= ε (p, r) +
i

2�
P [[ε (p, r) ,ARl

]AP l

− [ε (p, r) ,AP l ]ARl
] + V (r) (47)

where ε (p, r) is the matrix β

√
(p − A(r))2 + m2 and

P [...] now projects on the diagonal blocks.
In equation (47) the operators (p, r) are the physical

dynamical variables satisfying the non-canonical commu-
tations relations equation (39). Using the expressions for
the Berry connections, HD can be rewritten as:

HD = ε (p, r) + P
[
− i

2
[
ε (p, r) , U∇P iU+

]
εijkU∇P j U+

]

× Bk(r)
�

+ V (r). (48)

Moreover, a straightforward computation shows that one
can write
P
[− i

2 [ε (p, r) , U∇P iU+] · εijkU∇Pj U
+
] Bk(r)

�
= β �Σ·B

2E

− β L·B
E

at the first order in �, where we have introduced the
intrinsic angular momentum of semiclassical particles
L = P×AR with AR = P [AR] = �

(P−A(R))×Σ
2E(E+m) the pro-

jection of the Berry connection on the diagonal. As a con-
sequence, the Hamiltonian to be considered is given by

HD = ε (p, r) + β
�Σ ·B

2E
− β

L ·B
E

+ V (r) (49)

which is the Hamiltonian deduced in [4] from a different
approach and which leads of course to the dynamics de-
scribed in that paper.

3.2 The electron in a static gravitational field

The behavior of Dirac particles in static gravitational field
is an important issue, at the crossroad of particle physics
and cosmology. Different approaches for the diagonaliza-
tion of the Hamiltonian lead to contradictory results in
particular with regard to the existence of a dipole spin-
gravity coupling [17,18]. It is not our goal to discuss this
specific point but we study the semiclassical diagonaliza-
tion of the Hamiltonian to get the velocity and momentum
evolution. We can in particular compare our results with
the article [18] where a Foldy-Wouthuysen transformation
instead of a semiclassical approximation is used.

The interaction of a Dirac particle with a symmet-
ric static gravitational field (g00 = V (R), gi0 = 0, gij =
δijF (R)) is described by the Hamiltonian [18]

H0 =
1
2

(α ·PF (R) + F (R)α ·P) + βmV (r). (50)
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ARi = i�U∇PiU
+ = �

iF 3(R)α · PPiβ + iβF (R)E(E + mV (R))αi − EF 2(R) (Σ × P)i

2E2 (E + mV (R))

APi = −i�U∇RiU
+ = −�i

m (∇Riφ) βF 2(R)α · P
2E2

(52)

The Foldy Whouthuysen transformation when R is re-
placed by a parameter r̃ is given by

U (P, r̃) =
E + mV (r̃) + βF (r̃)α · P
√

2E(E + mV (r̃))
(51)

with E (P, r̃) =
√

F 2(r̃)P2 + m2V 2(r̃). This is quite the
same as the free particle transformation. As a consequence
introducing again the R dependence yields the non pro-
jected Berry connections for the position and the momen-
tum operators:

see equation (52) above

with φ = V/F , Σ the spin of the electron
and the energy E is now given by E (P,R) =√

(F 2(R)P2 + P2F 2(R)) /2 + m2V 2(R).
The expressions for ARi and APi allow us ultimately

to define the semiclassical transformation: U (P,R) +
i

4�
[AP l ,ARl

] U (P,R) and to compute the diagonal
Hamiltonian

HD = P
[
UH0U

+
]

= ε (p, r)− β
F 3(r)
2E2

m�∇φ(r) · (p × Σ)

(53)
with ε (p, r) = β

√
(F 2(r)p2 + p2F 2(r)) /2 + m2V 2(r)

where the dynamical variables which are deduced from
the projections AR = P [AR] = �

F 2Σ×P
2E(E+mV ) and AP =

P [AP] = 0 are given by

r = R+AR = R−�
F 2(R)Σ× P

2E(E + mV (R))
p = P+AP = P. (54)

The commutators between these variables are thus

[ri, rj ] = iΘrr
ij

[ri, pj] = i�δij + iΘrp
ij

[pi, pj] = 0 (55)

where the Berry curvatures expressed in terms of the op-
erators (p, r) are

Θrr
ij = −�

2F 3(r)εijk

2E3 (p, r)

(
mφ(r)Σk +

F (r) (Σ · p)pk

E (p, r) + mV (r)

)

Θrp
ij =

�
2F 3(r)

2E3 (p, r)
m∇iφ(r) (Σ× p)j

Θpp
ij = 0. (56)

One can check, after developing r as a function of R and
the Berry connection, that the Hamiltonian equation (53)

coincides with the one given in [18] at order �. This con-
firms also the validity of the Foldy Wouthuysen approach
asserted in [18] in opposition with the transformation pro-
posed in [17]. However our approach is more general since
it does not require an expansion in V and F as done in [18].
Of course, we retrieve the result of [18] if we expand ex-
pression (56) at the leading order in F and V . Note also
that when m = 0 one recovers the Hamiltonian for the
Neutrino or the photon proposed in [3,16].

To conclude this paragraph, we can derive the equa-
tions of motion with the help the noncanonical commuta-
tors between the coordinates and the spin

ΘrΣ
ij = [ri, Σj] = i�c2 −pjΣi + p ·Σδij

E (p, r) (E (p, r) + mV (r))

ΘpΣ
ij = [pi, Σj] = 0. (57)

We then can deduce the semiclassical equations of motion
for the electron in a symmetric static gravitational field
(by projecting on the positive energy subspace)

ṙ =
(

1 − Θrp

�

)
∇pE − 1

�
ṗ×Θrr +

i

�
ΘrΣ · ∇ΣE

ṗ = −
(

1 − Θrp

�

)
∇rE (58)

where we have defined the vectors Θrr through Θrr
ij =

εijkΘrr
k . We defined also in equation (58) the vector com-

ponents (Θrp∇pE)i = Θrp
ij ∇pj E and

(
ΘrΣ · ∇ΣE

)
i

=
ΘrΣ

ij ∇Σj E. The velocity equation in equation (58) con-
tains in particular an anomalous velocity term ṗ×Θrr/�

of order � which causes an additional displacement of the
electrons orthogonally to the momentum p. The dynam-
ics of the system must be completed by the spin dynamics
which is

�Σ̇ =
mV (r)�

ε(ε + mV (r))
Σ× (∇V (r)×P)− �

ε
Σ× (∇F (r)×P) .

(59)
Although the position dynamics differs from the one of
obtained in [18], due to our choice for the physical position
operator (r instead of R), one can show that the equations
for ṗ and �Σ̇ reduce to [18] in the case of weak fields.

4 Application 2: the electron in a periodic
potential

This application has already been independently studied
in [15], and is easily recovered by the present general set-
up. The purpose is to find the semiclassical Hamiltonian
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for an electron in a periodic potential facing an electro-
magnetic field. This topic was also already dealt with in [9]
in the context of wave packets dynamics. We will show
that the semiclassical equations of motions which are very
essential in the solid state physics context must be cor-
rected by Berry phases terms. To apply our formalism,
consider an electron in an crystal lattice perturbated by
the presence of an external electromagnetic field. As is
usual, we express the total magnetic field as the sum of a
constant field B and small nonuniform part δB(R). The
Schrödinger equation reads (H0 − eφ(R))Ψ(R) = EΨ(R)
with H0 the magnetic contribution (φ being the electric
potential) which reads

H0 =
(

P
2m

+ eA(R) + eδA(R)
)2

+ V (R), P = −i�∇
(60)

where A(R) and δA(R) are the vectors potential of the
homogeneous and inhomogeneous magnetic field, respec-
tively, and V (R) the periodic potential. The large con-
stant part B is chosen such that the magnetic flux through
a unit cell is a rational fraction of the flux quantum
h/e. The advantage of such a decomposition is that for
δA(R) = 0 the magnetic translation operators T(b) =
exp(iK · b) defined in Appendix B, with K the generator
of translation, are commuting quantities allowing to ex-
actly diagonalize the Hamiltonian and to treat δA(R) as
a small perturbation. The state space of the Bloch electron
in the periodic zone scheme [21] is spanned by the basis
vectors of plane waves |n,k〉 = |k〉⊗|n〉 with n correspond-
ing to a band index and k vary in R3. The state |n〉 can be
seen as a canonical base vector |n〉 = (0...010...0...) (with
1 at the nth position) such that U+ (k) |n〉 = |un (k)〉 with
|un (k)〉 the periodic part (in space) of the magnetic Bloch
waves [9,22]. In this representation K |n,k〉 = k |n,k〉 and
consequently the position operator is R =i∂/∂k, implying
the canonical commutation relations

[
Ri,Kj

]
= iδij .

We first perform the diagonalization of the Hamilto-
nian in equation (60) for δA = 0 by diagonalizing simul-
taneously H0 and the magnetic translation operators T.
The diagonalization is performed as follows: start with
an arbitrary basis of eigenvectors of T. As explained in
Appendix B, in this basis H0 can be seen as a square
matrix with operators entries. H0 is diagonalized through
a unitary matrix U(K) which should depend only on K
(since U should leave K invariant, i.e., UKU+ = K) and
whose precise expression is not necessary for the deriva-
tion of the equations of motion, such that UHU+ =
E(K) − eφ(URU+), where E(K) is the diagonal energy
matrix made of elements En(K) with n the band index
(i.e. the diagonal representation of H0).

Now, to add a perturbation δA(R) as in [15], that
breaks the translational symmetry, we have to replace K
in all expressions by

K̃ = K + e
δA(R)

�
(61)

and as the flux δB on a plaquette is not a rational multiple
of the flux quantum, we cannot diagonalize simultaneously

its components K̃i since they do not commute anymore.
Actually

�[K̃i, K̃j] = −ieεijkδBk(R). (62)

As a consequence of this non-commutativity, we just aim
at quasi-diagonalizing our Hamiltonian at the semiclassi-
cal order (with accuracy �). To do that we replace U(K)
by U

(
K̃
)
, so that the non projected Berry connections

are ARi = iU∇K̃i
U+ and AKl

= ∇Rl
δAk(R)ARk

. From
these we can define the nth intraband position and mo-
mentum operators rn= R+An and k̃n � K̃ − eAn(k̃n) ×
δB(rn)/� + O(�) with An = Pn(U∇K̃U+) the projection
of the Berry connection on the chosen nth Band [15]. It
can be readily seen that the matrix elements of An can be
written An (k) = i 〈un (k)| ∇k |un (k)〉 (see also Ref. [22]
for the derivation of the position operator in the diagonal
representation). What is totally new here is the transfor-
mation on the momentum operator k̃n which get also a
Berry connection correction.

Using our results of Section 2, the full Hamiltonian
equation (60) can thus be diagonalized through the trans-
formation U(K̃)+ i

4�
[ARl

,AP l ] U(K̃) plus a projection on
the chosen nth Band as it is usual in solid state physics
(the so-called one band approximation)

Pn

[
U
(
K̃
)
HU+

(
K̃
)]

=

Pn

[
E
(
k̃
)
− i

4
[E(K), U∇KiU

+
]
εijk δBk(r)

�
U∇Kj U

+

− i

4
U∇Kj U

+
[E(K), U∇KiU

+
]
εijk δBk(r)

�

]

= En

(
k̃n

)
−M(K̃).δB(rn)+O(�2). (63)

where the energy levels En

(
k̃n

)
are the same as En(K)

with k̃n replacing K. The magnetization M(K̃) =
Pn( ie

2�

[
E(K̃),A(K̃)

]
× A(K̃)) can be written under the

usual form [22] in the (k, n) representation

Mi
nn =

ie

2�
εijk

∑

n′ �=n

(En − En′)(Aj)nn′(Ak)n′n.

We mention that this magnetization (the orbital magnetic
moment of Bloch electrons), has been obtained previously
in the context of electron wave packets dynamics [9].

From the expression of the energy equation (63) we
can deduce the equations of motion (with the band index
n now omitted)

ṙ = ∂E(k̃)/�∂k̃− ˙̃k × Θ(k̃)

�
˙̃k = −eE− eṙ× δB(r) − M∂δB/∂r (64)

where
[
ri, rj

]
= iΘij(k̃) with Θij(k̃) = ∂iAj(k̃)−∂jAi(k̃)

the Berry curvature.
As explained in [15] these equations are the same

as the one derived in [9] from a completely different
formalism.
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i

2
�Asym∇Rl∇P l

[
U (P, R)H0 (P, R) U+ (P, R)

]
=

i

2
�Asym∇Rl∇P l [U (P, R)] H0 (P,R) U+ (P,R)

+
i

2
�U (P, R) Asym∇Rl∇P l [H0 (P,R)] U+ (P, R)

+
i

2
�U (P, R) H0 (P,R) Asym∇Rl∇P l

[
U+ (P, R)

]

+
i

2
�∇RlU (P,R)∇P lH0 (P, R)U+ (P, R)

− i

2
�∇P lU (P,R)∇RlH0 (P, R)U+ (P, R)

− i

2
�U (P, R)∇P lH0 (P,R)∇RlU

+ (P, R)

+
i

2
�∇P lU (P,R)∇RlH0 (P, R)∇P lU

+ (P, R)

+
i

2
�∇RlU (P,R) H0 (P,R)∇P lU

+ (P, R)

− i

2
�∇P lU (P,R) H0 (P,R)∇RlU

+ (P, R) (A.1)

5 Conclusion

Some recent applications of semiclassical methods to sev-
eral branches of Physics, such as spintronics or solid state
physics have shown the relevance of Berry Phases contri-
butions to the dynamics of a system. However, these pro-
gresses called for a rigorous Hamiltonian treatment that
would allow for deriving naturally the role of the Berry
phase.

This paper has been devoted to derive a semiclassi-
cal diagonalization method for a broad class of quantum
systems, including the electron in a periodic potential and
the Dirac Hamiltonian. Doing so, we have exhibited a gen-
eral pattern for this class of systems implying the role
of the Berry phases both for the position and the mo-
mentum. In such a context, the coordinates and momenta
algebra are no longer commutative, and the dynamical
equations for these variables directly include the influence
of Berry phases through the parameters of noncommuta-
tivity (Berry curvatures) and through an abstract magne-
tization term. Applications of our formalism consider the
Dirac electron in an electromagnetic field, or in a particu-
lar case of static gravitational field, as well as the electron
in a periodic potential. Our results are promising and indi-
cate that our method will probably apply to several other
systems.

The authors wish to thank Aileen Lotz for a critical reading of
the manuscript.

Appendix A

To start our computation, we will use the formula given
in the preliminary:

see equation (A.1) above
Let us first remark that H0 (P,R) is already
symmetrized in R and P. As a consequence

Asym∇Rl
∇P l [H0 (P,R)] = 0. Actually, remember

that the asymmetrization term was the sum of commuta-
tors obtained by pushing the momentum half on the left
and half on the right. For the same reason

Asym∇Rl
∇P l [U(P,R)] = Asym∇Rl

∇P l

[
U+(P,R)

]

= 0. (A.2)

Now, we introduce the transformed variables and the non
projected Berry Phases at order �:

r = (U (P,R) + X)R
(
U+(P,R)+X+

)

� R +
[
i�U (P,R)∇P U+ (P,R)

]
= R + AR

p = U (P,R)PU+(P,R)

� P − [i�U (P,R)∇RU+ (P,R)
]

= P + AP . (A.3)

Before going further, we can find some relations on the
Berry connections. Given that:

U (P,R)U+(P,R) = 1 (A.4)

at the zeroth order in � we have the following relations at
the first order in �:

AR = i�U (P,R)∇P U+ (P,R)

= −i∇P U (P,R)U+ (P,R)

AP = −i�U (P,R)∇RU+ (P,R)

= i∇RU (P,R)U+ (P,R) . (A.5)

Using these results as well as ∇P l = −i
�

[Rl, ],
∇Rl

= i
�

[
P l,
]

and inserting the operators U (P,R) and
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i

2
�Asym∇Rl∇P l

[
U (P,R) H0 (P, R) U+ (P, R)

]
=

−i

2�
AP lU (P,R) [Rl, H0 (P,R)] U+ (P, R)

+
i

2�
ARlU (P,R) [Pl, H0 (P,R)] U+ (P, R)

− i

2�
U (P, R) [Rl, H0 (P, R)] U+ (P,R)AP l

+
i

2�
U (P, R)

[
P l, H0 (P,R)

]
U+ (P, R)ARl

− i

2�
AP lε (P, R)ARl +

i

2�
ARlε (P,R)AP l

=
−i

2�
AP l [rl, ε (P, R)] +

i

2�
ARl

[
pl, ε (P,R)

]
− i

2�
[rl, ε (P,R)]AP l

+
i

2�

[
pl, ε (P,R)

]
ARl −

i

2�
AP lε (P, R)ARl +

i

2�
ARlε (P,R)AP l

=
1

2
[ARl∇Rlε (P,R) + ∇Rlε (P, R)ARl ]

+
1

2
[AP l∇Plε (P,R) + ∇Plε (P,R)AP l ] − i

2�
AP l [ARl , ε (P, R)]

− i

2�
[ARl , ε (P, R)]AP l +

i

2�
ARl [AP l , ε (P, R)] +

i

2�
[AP l , ε (P,R)]ARl

− i

2�
AP lε (P, R)ARl +

i

2�
ARlε (P,R)AP l . (A.6)

U+ (P,R) when needed, we get:

see equation (A.6) above

Rearranging the commutators leads to:

i

2
�Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+(P,R)

]
=

1
2

[ARl
∇Rl

ε (P,R) + ∇Rl
ε (P,R)ARl

]

+
1
2

[APl
∇Pl

ε (P,R) + ∇Pl
ε (P,R)APl

]

− i

2�
ARl

[ε (P,R) ,APl
] − i

2�
[ε (P,R) ,APl

]ARl

+
i

2�
AP l [ε (P,R) ,ARl

] +
i

2�
[ε (P,R) ,ARl

]AP l

− i

2�
AP lε (P,R)ARl

+
i

2�
ARl

ε (P,R)AP l (A.7)

rewrite −i
2�
AP lε (P,R)ARl

+ i
2�
ARl

ε (P,R)AP l as
− i

2�
AP l [ε (P,R) ,ARl

] + i
2�
ARl

[ε (P,R) ,AP l ] +
i

2�
[ARl

,AP l ] ε (P,R) so that:

i

2
�Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]
=

1
2

[ARl
∇Rlε (P,R) + ∇Rlε (P,R)ARl

]

+
1
2

[AP l∇Pl
ε (P,R) + ∇Pl

ε (P,R)AP l ]

− i

2�
[ε (P,R) ,AP l ]ARl

+
i

2�
[ε (P,R) ,ARl

]AP l +
i

2�
[ARl

,AP l ] ε (P,R) .

(A.8)

And we thus have:

U (P,R)H0 (P,R)U+ (P,R) =

ε (P,R) +
1
2

[ARl
∇Rlε (P,R) + ∇Rlε (P,R)ARl

]

+
1
2

[AP l∇Pl
ε (P,R) + ∇Pl

ε (P,R)AP l ]

− i

2�
[ε (P,R) ,AP l ]ARl

+
i

2�
[ε (P,R) ,ARl

]AP l +
i

2�
[ARl

,AP l ] ε (P,R)

(A.9)

as claimed in the text.

Appendix B: How solid states physics fits
in our framework

In solid state Physics, we assume that the Hamiltonian
is invariant through a discrete group of translations, for
example a group of lattice translations, whose elements
have the form

T (b) = exp

(

− i

�

∫ b

0

Ai(R + r)dr

)

exp
(

i

�
P · b

)

(B.1)
where b is an arbitrary lattice vector. The eigenvalues of
this operator are degenerated and have the form

exp (ik · b) (B.2)

where k belongs to some reduced dual lattice (a fraction
of the dual lattice, i.e. a plaquette in solid state physics).
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We aim at defining the generators K of these transforma-
tions as

K · b = log (T (b)) (B.3)

so that we can define

Ki = ∂biK · b (B.4)

However, this logarithm cannot be defined uniquely, and
we will build an explicit choice in the sequel.

To do so, we work with the extended representation, so
that the considered state space is defined, similarly to the
Dirac case, by: L2(R3)⊗E, where L2(R3) is seen as the set
of functions of the variable k, running on R3. E is a vector
space of infinite size representing the bands. For each value
of k, T (b) is diagonal in E, with eigenvalues exp (ik · b).
We define Ki as acting diagonally as the multiplication
by ki. In other words, we have defined the momentum
through an extension: K ≡ K ⊗ IdE . Consequently the
position operator R is acting as i∇k. Therefore the state
space of the Bloch electron is spanned by the basis vector
of plane waves |n,k〉 = |k〉⊗|n〉 with n corresponding to a
band index. The state |n〉 can be seen as a canonical base
vector |n〉 = (0...010...0...) (with 1 at the nth position).

Turning now to the diagonalization process for the
Hamiltonian, this last one can be performed indepen-
dently for each value of k, since the Hamiltonian com-
mutes with the translations. We can thus see the
Hamiltonian as a set of square matrices indexed by k,
each of them acting on each copy of E. As a consequence
the diagonalization matrix is a Block acting on E for each
value of k.

Note that this diagonalization matrix can of course be
seen as an operator U(K,R) or, and this is the point of
view we adopt here, as a matrix acting on each copy of E,
that is, a matrix U(K), whose entries depend on K only.
Actually, the dependence in R appears in the non diagonal
elements, and we can discard them if we consider this “half
matrix, half operator” version. This mixed representation
has the advantage to do the connection with the Dirac
Hamiltonian.

In this set up, K being diagonal and proportional to
the identity, it commutes with every matrix U(K,R) pre-
serving the Blocks. When considering the diagonalized
Hamiltonian ε(R,K), it can also be seen as a diagonal
matrix (implicitly denoted ε(K)) whose components are
diagonal and denoted εn(K), the n th band energy. The
commutator

[R,ε(K)] = ∇ε(K) (B.5)

is again a diagonal matrix whose entries are ∇εn(K)
(sketch of proof: ε(K) is a series whose elements are
products of powers of K and R. For each power of K, the
fact that ε(K) is diagonal implies that the dependence in
R is a diagonal matrix. The gradient in K acting only
on the power of K, this diagonality is preserved). Turn-
ing now to the perturbation δA(R), let us remark that

if the operator δA(R) preserves the bands, all opera-
tors ε(K)δA(R), [ε(K), δA(R)] are diagonal, and given
our previous remarks, the same is true for ∇ε(K)δA(R),
[∇ε(K), δA(R)].

All this remarks that are obviously true for the Dirac
case, appear to be useful in the solid state physics case (ap-
plication 2), since it shows that the electron in an periodic
potential fits in our framework. Actually, we can formally
consider the Hamiltonian of such a problem as given by a
matrix depending on the momenta and the coordinates.
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